

AP Physics C

# Defining the important variables

#### *Kinematics* is a way of describing the motion of objects without describing the causes. You can describe an object's motion:

#### In words

Mathematically Pictorially Graphically

No matter HOW we describe the motion, there are several KEY VARIABLES

that we use.

| Symbol              | Variable                    | Units |
|---------------------|-----------------------------|-------|
| t                   | Time                        | S     |
| а                   | Acceleration                | m/s/s |
| x or y              | Displacement                | m     |
| Vo                  | Initial velocity            | m/s   |
| V                   | Final velocity              | m/s   |
| g or a <sub>g</sub> | Acceleration due to gravity | m/s/s |

### The 3 Kinematic equations

There are 3 major kinematic equations than can be used to describe the motion in **DETAIL.** All are used when the acceleration is *CONSTANT*.

$$v = v_o + at$$
  

$$x = x_o + v_o t + \frac{1}{2} at^2$$
  

$$v^2 = v_o^2 + 2a(x - x_o)$$

$$a = \frac{\Delta v}{\Delta t} \rightarrow \frac{v - v_o}{t} \quad v - v_o = at$$
$$v = v_o + at$$

Example: A boat moves slowly out of a marina (so as to not leave a wake) with a speed of 1.50 m/s. As soon as it passes the breakwater, leaving the marina, it throttles up and accelerates at 2.40 m/s/s.

a) How fast is the boat moving after accelerating for 5 seconds?

| What do I<br>know?        | What do I<br>want? | $v = v_o + at$         |
|---------------------------|--------------------|------------------------|
| v <sub>o</sub> = 1.50 m/s | v = ?              | v = (1.50) + (2.40)(5) |
| a = 2.40 m/s/s            |                    | v = 13.5  m/s          |
| t = 5 s                   |                    |                        |

$$x = x_o + v_{ox}t + \frac{1}{2}at^2$$

b) How far did the boat travel during that time?

$$x = x_o + v_{ox}t + \frac{1}{2}at^2$$
  
$$x = 0 + (1.5)(5) + \frac{1}{2}(2.40)(5^2)$$

 $\chi = 37.5 \,\mathrm{m}$ 

#### Does all this make sense?



Total displacement = 7.50 + 30 = 37.5 m = Total AREA under the line.



$$v^2 = v_o^2 + 2a(x - x_o)$$

Example: You are driving through town at 12 m/s when suddenly a ball rolls out in front of your car. You apply the brakes and begin decelerating at 3.5 m/s/s.

How far do you travel before coming to a complete stop?

| What do I<br>know?      | What do I<br>want? |
|-------------------------|--------------------|
| v <sub>o</sub> = 12 m/s | x = ?              |
| a = -3.5 m/s/s          |                    |
| V = 0 m/s               |                    |

$$v^{2} = v_{o}^{2} + 2a(x - x_{o})$$
  

$$0 = 12^{2} + 2(-3.5)(x - 0)$$
  

$$-144 = -7x$$

x = 20.57 m

#### Common Problems Students Have

I don't know which equation to choose!!!

| Equation                              | Missing Variable |
|---------------------------------------|------------------|
|                                       |                  |
|                                       | X                |
| $v = v_o + at$                        |                  |
| $x = x_o + v_{ox}t + \frac{1}{2}at^2$ | V                |
| $v^2 = v_o^2 + 2a(x - x_o)$           | t                |

#### Kinematics for the VERTICAL Direction

All 3 kinematics can be used to analyze **one dimensional motion** in either the X direction OR the y direction.

$$v = v_o + at \to v_y = v_{oy} + gt$$
  

$$x = x_o + v_{ox}t + \frac{1}{2}at^2 \to y = y_o + v_{oy}t + \frac{1}{2}gt^2$$
  

$$v^2 = v_{ox}^2 + 2a(x - x_o) \to v_y^2 = v_{oy}^2 + 2g(y - y_o)$$

# "", "" or $a_g$ – The Acceleration due to gravity

The acceleration due to gravity is a special constant that exists in a VACUUM, meaning without air resistance. If an object is in FREE FALL, gravity will **CHANGE** an objects velocity by 9.8 m/s every second.



$$g = a_g = -9.8 \, m/s^2$$

The acceleration due to gravity: •ALWAYS ACTS DOWNWARD •IS ALWAYS CONSTANT near the surface of Earth



#### A stone is dropped at rest from the top of a cliff. It is observed to hit the ground 5.78 s later. How high is the cliff?

| What do I<br>know?        | What do I<br>want? |
|---------------------------|--------------------|
| v <sub>0</sub> = 0 m/s    | y = ?              |
| g = -9.8 m/s <sup>2</sup> |                    |
| y <sub>o</sub> =0 m       |                    |
| t = 5.78 s                |                    |

Which variable is NOT given and NOT asked for?

**Final Velocity!** 

$$y = y_o + v_{oy}t + \frac{1}{2}gt^2$$

$$y = (0)(5.78) - 4.9(5.78)^2$$

*y* = **-163.7** m

H =163.7m



A pitcher throws a fastball with a velocity of 43.5 m/s. It is determined that during the windup and delivery the ball covers a displacement of 2.5 meters. This is from the point behind the body when the ball is at rest to the point of release. Calculate the acceleration during his throwing motion.

| What do I<br>know?     | What do I<br>want? |
|------------------------|--------------------|
| v <sub>o</sub> = 0 m/s | a = ?              |
| x = 2.5 m              |                    |
| v = 43.5 m/s           |                    |

Which variable is NOT given and NOT asked for?

$$v^2 = v_o^2 + 2a(x - x_o)$$

 $43.5^2 = 0^2 + 2a(2.5 - 0)$ 

a = 378.5 m/s/s



How long does it take a car at rest to cross a 35.0 m intersection after the light turns green, if the acceleration of the car is a constant 2.00 m/s/s?

| What do I<br>know?     | What do I<br>want? |
|------------------------|--------------------|
| v <sub>o</sub> = 0 m/s | t = ?              |
| x = 35 m               |                    |
| a = 2.00 m/s/s         |                    |

Which variable is NOT given and NOT asked for? Final Velocity

$$x = x_o + v_{ox}t + \frac{1}{2}at^2$$

$$35 = 0 + (0) + \frac{1}{2}(2)t^{2}$$
  
t = 5.92 s



# A car accelerates from 12.5 m/s to 25 m/s in 6.0 seconds. What was the acceleration?

| What do I<br>know?        | What do I<br>want? |
|---------------------------|--------------------|
| v <sub>o</sub> = 12.5 m/s | a = ?              |
| v = 25 m/s                |                    |
| t = 6s                    |                    |

Which variable is NOT given and NOT asked for?

#### DISPLACEMENT

$$v = v_o + at$$

$$25 = 12.5 + a(6)$$

a = 2.08 m/s/s

#### Kinematics and Calculus

Let's take the "derivative" of kinematic #2 assuming the object started at x = 0.

$$x = v_{ox}t + \frac{1}{2}at^{2}$$

$$v = \frac{dx}{dt} = \frac{d(v_{ox}t + \frac{1}{2}at^{2})}{dt}$$

$$v = v_{o} + at$$

$$a = \frac{dv}{dt} = \frac{d(v_{0} + at)}{dt} = a$$